skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Choi, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Many mechanical engineering applications call for multiscale computational modeling and simulation. However, solving for complex multiscale systems remains computationally onerous due to the high dimensionality of the solution space. Recently, machine learning (ML) has emerged as a promising solution that can either serve as a surrogate for, accelerate or augment traditional numerical methods. Pioneering work has demonstrated that ML provides solutions to governing systems of equations with comparable accuracy to those obtained using direct numerical methods, but with significantly faster computational speed. These high-speed, high-fidelity estimations can facilitate the solving of complex multiscale systems by providing a better initial solution to traditional solvers. This paper provides a perspective on the opportunities and challenges of using ML for complex multiscale modeling and simulation. We first outline the current state-of-the-art ML approaches for simulating multiscale systems and highlight some of the landmark developments. Next, we discuss current challenges for ML in multiscale computational modeling, such as the data and discretization dependence, interpretability, and data sharing and collaborative platform development. Finally, we suggest several potential research directions for the future. 
    more » « less
  2. Deep learning can learn the complex physics of energetic materials. 
    more » « less
  3. Localization is one form of cooperative spectrum sensing that lets multiple sensors work together to estimate the location of a target transmitter. However, the requisite exchange of spectrum measurements leads to exposure of the physical loca- tion of participating sensors. Furthermore, in some cases, a com- promised participant can reveal the sensitive characteristics of all participants. Accordingly, a lack of sufficient guarantees about data handling discourages such devices from working together. In this paper, we provide the missing data protections by processing spectrum measurements within attestable containers or enclaves. Enclaves provide runtime memory integrity and confidentiality using hardware extensions and have been used to secure various applications [1]–[8]. We use these enclave features as building blocks for new privacy-preserving particle filter protocols that minimize disruption of the spectrum sensing ecosystem. We then instantiate this enclave using ARM TrustZone and Intel SGX, and we show that enclave-based particle filter protocols incur minimal overhead (adding 16 milliseconds of processing to the measurement processing function when using SGX versus unprotected computation) and can be deployed on resource-constrained platforms that support TrustZone (incurring only a 1.01x increase in processing time when doubling particle count from 10,000 to 20,000), whereas cryptographically-based approaches suffer from multiple orders of magnitude higher costs. We effectively deploy enclaves in a distributed environment, dramatically improving current data handling techniques. To our best knowledge, this is the first work to demonstrate privacy-preserving localization in a multi-party environment with reasonable overhead. 
    more » « less
  4. Abstract Artificial intelligence (AI) is rapidly emerging as a enabling tool for solving complex materials design problems. This paper aims to review recent advances in AI‐driven materials‐by‐design and their applications to energetic materials (EM). Trained with data from numerical simulations and/or physical experiments, AI models can assimilate trends and patterns within the design parameter space, identify optimal material designs (micro‐morphologies, combinations of materials in composites, etc.), and point to designs with superior/targeted property and performance metrics. We review approaches focusing on such capabilities with respect to the three main stages of materials‐by‐design, namely representation learning of microstructure morphology (i. e., shape descriptors), structure‐property‐performance (S−P−P) linkage estimation, and optimization/design exploration. We leave out “process” as much work remains to be done to establish the connectivity between process and structure. We provide a perspective view of these methods in terms of their potential, practicality, and efficacy towards the realization of materials‐by‐design. Specifically, methods in the literature are evaluated in terms of their capacity to learn from a small/limited number of data, computational complexity, generalizability/scalability to other material species and operating conditions, interpretability of the model predictions, and the burden of supervision/data annotation. Finally, we suggest a few promising future research directions for EM materials‐by‐design, such as meta‐learning, active learning, Bayesian learning, and semi‐/weakly‐supervised learning, to bridge the gap between machine learning research and EM research. 
    more » « less
  5. With close to native performance, Linux containers are becoming the de facto platform for cloud computing. While various solutions have been proposed to secure applications and containers in the cloud environment by leveraging Intel SGX, most cloud operators do not yet offer SGX as a service. This is likely due to a number of security, scalability, and usability concerns coming from both cloud providers and users. Cloud operators worry about the security guarantees of unofficial SDKs, limited support for remote attestation within containers, limited physical memory for the Enclave Page Cache (EPC) making it difficult to support hundreds of enclaves, and potential DoS attacks against EPC by malicious users. Meanwhile, end users need to worry about careful program partitioning to reduce the TCB and adapting legacy applications to use SGX. We note that most of these concerns are the result of an incomplete infrastructure, from the OS to the application layer. We address these concerns with lxcsgx, which allows SGX applications to run inside containers while also: enabling SGX remote attestation for containerized applications, enforcing EPC memory usage control on a per-container basis, providing a general software TPM using SGX to augment legacy applications, and supporting partitioning with a GCC plugin. We then retrofit Nginx/OpenSSL and Memcached using the software TPM and SGX partitioning to defend against known and potential attacks. Thanks to the small EPC footprint of each enclave, we are able to run up to 100 containerized Memcached instances without EPC swapping. Our evaluation shows the overhead introduced by lxcsgx is less than 6.9% for simple SGX applications, 9.5% for Nginx/OpenSSL, and 20.9% for containerized Memcached. 
    more » « less
  6. Abstract Predictive simulations of the shock‐to‐detonation transition (SDT) in heterogeneous energetic materials (EM) are vital to the design and control of their energy release and sensitivity. Due to the complexity of the thermo‐mechanics of EM during the SDT, both macro‐scale response and sub‐grid mesoscale energy localization must be captured accurately. This work proposes an efficient and accurate multiscale framework for SDT simulations of EM. We introduce a new approach for SDT simulation by using deep learning to model the mesoscale energy localization of shock‐initiated EM microstructures. The proposed multiscale modeling framework is divided into two stages. First, a physics‐aware recurrent convolutional neural network (PARC) is used to model the mesoscale energy localization of shock‐initiated heterogeneous EM microstructures. PARC is trained using direct numerical simulations (DNS) of hotspot ignition and growth within microstructures of pressed HMX material subjected to different input shock strengths. After training, PARC is employed to supply hotspot ignition and growth rates for macroscale SDT simulations. We show that PARC can play the role of a surrogate model in a multiscale simulation framework, while drastically reducing the computation cost and providing improved representations of the sub‐grid physics. The proposed multiscale modeling approach will provide a new tool for material scientists in designing high‐performance and safer energetic materials. 
    more » « less
  7. A protocol for two-party secure function evaluation (2P-SFE) aims to allow the parties to learn the output of function f of their private inputs, while leaking nothing more. In a sense, such a protocol realizes a trusted oracle that computes f and returns the result to both parties. There have been tremendous strides in efficiency over the past ten years, yet 2P-SFE protocols remain impractical for most real-time, online computations, particularly on modestly provisioned devices. Intel's Software Guard Extensions (SGX) provides hardware-protected execution environments, called enclaves, that may be viewed as trusted computation oracles. While SGX provides native CPU speed for secure computation, previous side-channel and micro-architecture attacks have demonstrated how security guarantees of enclaves can be compromised. In this paper, we explore a balanced approach to 2P-SFE on SGX-enabled processors by constructing a protocol for evaluating f relative to a partitioning of f. This approach alleviates the burden of trust on the enclave by allowing the protocol designer to choose which components should be evaluated within the enclave, and which via standard cryptographic techniques. We describe SGX-enabled SFE protocols (modeling the enclave as an oracle), and formalize the strongest-possible notion of 2P-SFE for our setting. We prove our protocol meets this notion when properly realized. We implement the protocol and apply it to two practical problems: privacy-preserving queries to a database, and a version of Dijkstra's algorithm for privacy-preserving navigation. Our evaluation shows that our SGX-enabled SFE scheme enjoys a 38x increase in performance over garbled-circuit-based SFE. Finally, we justify modeling of the enclave as an oracle by implementing protections against known side-channels. 
    more » « less
  8. Cooperative spectrum sensing is often necessary in cognitive radios systems to localize a transmitter by fusing the measurements from multiple sensing radios. However, revealing spectrum sensing information also generally leaks information about the location of the radio that made those measurements. We propose a protocol for performing cooperative spectrum sensing while preserving the privacy of the sensing radios. In this protocol, radios fuse sensing information through a distributed particle filter based on a tree structure. All sensing information is encrypted using public-key cryptography, and one of the radios serves as an anonymizer, whose role is to break the connection between the sensing radios and the public keys they use. We consider a semi-honest (honest-but-curious) adversary model in which there is at most a single adversary that is internal to the sensing network and complies with the specified protocol but wishes to determine information about the other participants. Under this scenario, an adversary may learn the sensing information of some of the radios, but it does not have any way to tie that information to a particular radio’s identity. We test the performance of our proposed distributed, tree-based particle filter using physical measurements of FM broadcast stations. 
    more » « less